题目如下:
In an array
A
containing only 0s and 1s, aK
-bit flip consists of choosing a (contiguous) subarray of lengthK
and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0.Return the minimum number of
K
-bit flips required so that there is no 0 in the array. If it is not possible, return-1
.
Example 1:
Input: A = [0,1,0], K = 1Output: 2Explanation: Flip A[0], then flip A[2].Example 2:
Input: A = [1,1,0], K = 2Output: -1Explanation: No matter how we flip subarrays of size 2, we can't make the array become [1,1,1].Example 3:
Input: A = [0,0,0,1,0,1,1,0], K = 3Output: 3Explanation:Flip A[0],A[1],A[2]: A becomes [1,1,1,1,0,1,1,0]Flip A[4],A[5],A[6]: A becomes [1,1,1,1,1,0,0,0]Flip A[5],A[6],A[7]: A becomes [1,1,1,1,1,1,1,1]
Note:
1 <= A.length <= 30000
1 <= K <= A.length
解题思路:如果A[0]是0,那么A[0]一定要翻转一次,当然翻转三次也是可以的,但是效果和翻转一次是一样的。接下来就可以忽略A[0]了,假设把A[0]删掉,那么A[1]就变成A[0],和之前对A[0]的操作是一样的,这也意味着可以从头遍历数组,遇到元素值为0就执行依次翻转操作。因为翻转A[i]意味着自身以及后面的K-1个元素都要翻转一次,所有可以把执行了翻转操作的下标存入列表flip_path,很显然flip_path的元素是升序排列的。最后从头开始遍历A,假设当前遍历到的元素为A[i],先从flip_path中找出前面执行的翻转操作有几个对自身有影响,有几个则翻转几次。如果翻转玩后恰好是1则继续遍历下一个元素,如果是0则判断i+K是否大于A的长度,大于表示无法翻转,返回-1,小于的话翻转次数加1,同时把i存入flip_path,继续下一个元素。
代码如下:
class Solution(object): def minKBitFlips(self, A, K): """ :type A: List[int] :type K: int :rtype: int """ import bisect flip = [] res = 0 for i in range(len(A)): if len(flip) > 0 and flip[0] + K <= i: flip.pop(0) inx = bisect.bisect_left(flip,i) if inx % 2 == 1: A[i] = 0 if A[i] == 1 else 1 if A[i] == 1: continue else : if i + K > len(A): return -1 A[i] = 1 flip.append(i) res += 1 return res